Behavior of Gases

- Adding gas _____ the pressure
- Ex. ____ more gas = ____ greater pressure
- _____ ratio as long as T and P are ______
- Decrease amount of gas _____ pressure
- Gases move from areas of _____ P to _____ P
 Changing container size changes pressure
- _____ container size = P increases ______
- ___ container size ____ = P decreases to _____

Properties of Gases

- Gases are composed of ______ motion.
 Gases flow readily and occupy the ______
- _____ of their _____.

 _____ a gas that is a liquid at room
 temperature and pressure (_______ and
 _____, but _____ and
- Many ______ molecular compounds are either _____ or easily vaporizable ______.

Measuring gases

- Used to measure atmospheric pressure.
- One _____: pressure exerted by a column of mercury exactly 760 mm high.
- One millimeter of mercury is called a _____.
 - 1 atm = ____ mm Hg
 - = _____ Torr
 - = _____ kPa (kilo Pascals)

Gas Laws

- Boyle's Law (constant temperature)
- Equation:
- Temp Pressure changes (constant V)
- Equation:
- Charles Law (constant Pressure)
- Equation:

Gas Laws Combined Gas Law Equation: Ideal Gas Law (use # moles of gas, n) Equation: PV/nT = R or PV = nRT Values of R (gas constant) R = _____L·atm / mol·K (pressure in atm) R = _____L·torr / mol·K (pressure in torr) R = _____kPa·L / mol·K (pressure in kPa)

Real vs. Ideal Gases
Idea gas law assumptions 1 2
 Departures from the gas laws PV / nRT = 1 (ideal gas) real gases PV / nRT or PV / nRT Due to real gases having and being to each other