Behavior of Gases

- Adding gas \qquad the pressure
- Ex. \qquad more gas = \qquad greater pressure
- \qquad ratio as long as T and P are \qquad
- Decrease amount of gas \qquad pressure
- Gases move from areas of \qquad P to \qquad P
- Changing container size changes pressure
- \qquad container size $=\mathrm{P}$ increases \qquad
- __ container size \qquad $=\mathrm{P}$ decreases to \qquad

Behavior of Gases

The principal assumptions of kinetic-molecular theory are:

- A gas is made up of molecules that are in
- Molecules of a gas are \qquad ; a gas is mostly
- There are \qquad between molecules except
- Individual molecules may \qquad or energy as a result of \qquad ; however, the total energy \qquad .

Behavior of Gases
The principal assumptions of kinetic-molecular theory are: - A gas is made up of molecules that are in
- Molecules of a gas are___ ; a gas is mostly
- There are \qquad between molecules except
- Individual molecules may \qquad or \qquad energy as a result of \qquad however, the total energy \qquad .

Properties of Gases

- Gases are composed of \qquad motion. particles in \qquad
- Gases flow readily and occupy the \qquad of their \qquad -
-- a gas that is a liquid at room temperature and pressure (and , but).
- Many \qquad molecular compounds are either \qquad or easily vaporizable \qquad .

Measuring gases

-
- Used to measure atmospheric pressure.
- One \qquad : pressure exerted by a column of mercury exactly 760 mm high.
- One millimeter of mercury is called a \qquad .

```
1 atm =___ mm Hg
\(=\)
mm Hg
Torr
\(=\ldots \quad \mathrm{kPa}\) (kilo Pascals)
```

Measuring Gases \qquad = Standard Temperature \& Pressure - $\mathrm{P}=$ \qquad kPa (\qquad kPa previously used) - T = \qquad K or \qquad ${ }^{\circ} \mathrm{C}$ - Gases may be measure in multiple ways - by mass (_) \qquad - by volume \square - by amount (\qquad - by pressure (see previous slide)

Gas Laws

- Dalton's Law of Partial Pressures
- $\mathrm{P}_{\text {total }}=$ \qquad
- This means that the \qquad of the in a container is the individual pressures of each gas found inside of the container

Gas Laws

- Boyle's Law (constant temperature)
- Equation:
- Temp - Pressure changes (constant V)
- Equation:
- Charles Law (constant Pressure)
- Equation:

Diffusion \& Graham's Law

- Diffusion - gases move from
- Graham studied \qquad (gas escaping from a small opening in a container)
- Rate of effusion (or diffusion) is \qquad proportional to the
-

 (KE of diff. gases is equal at $=\mathrm{T}$)

- $(\mathrm{m}=$ \qquad , $\mathrm{v}=$ \qquad _)

$$
\frac{\text { Rate }_{A}}{\text { Rate }_{B}}=\frac{\sqrt{\text { MolarMass }_{B}}}{\sqrt{\text { MolarMass }_{A}}}
$$

Gas Laws

- Combined Gas Law
- Equation:
- Ideal Gas Law (use \# moles of gas, n)
- Equation:
- $\mathrm{PV} / \mathrm{nT}=\mathrm{R} \quad$ or $\mathrm{PV}=\mathrm{nRT}$
- Values of R (gas constant)
$R=$ \qquad $\mathrm{L} \cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}$ (pressure in atm)
$\mathrm{R}=$ \qquad L -torr / mol $\cdot \mathrm{K}$ (pressure in torr)
$\mathrm{R}=$ \qquad $\mathrm{kPa} \cdot \mathrm{L} / \mathrm{mol} \cdot \mathrm{K}$ (pressure in kPa)

Real vs. Ideal Gases
- Idea gas law assumptions
1.
2.
- Departures from the gas laws
$\mathrm{PV} / \mathrm{nRT}=1$ (ideal gas) real gases $\mathrm{PV} / \mathrm{nRT}$ Due to real gases having or $\quad \mathrm{PV} / \mathrm{nRT}$ to each other and being

- Idea gas law assumptions

1. \qquad

- Departures from the gas laws
$\mathrm{PV} / \mathrm{nRT}=1$ (ideal gas)
real gases PV / nRT \qquad or PV/nRT \qquad
Due to real gases having and being to each other

